Fuzzy Rule-Based Machine Learning in Process Modeling

نویسنده

  • BODENHOFER Ulrich
چکیده

The optimization of technical processes requires a sufficient understanding of the interrelations in a process. More specifically, this means that a model of the given process is needed. Traditional methods for modeling technical processes are based on analytical relationships that are either explicit formulas derived from knowledge in physics, chemistry or engineering science or given as solutions of systems of differential equations. In practice, however, one is often confronted with processes that are too complex to be sufficiently captured by an analytical model or — although it would be possible in principle — the development of a full-fledged analytical model is too costly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Modeling Via On-Line Clustering and Support Vector Machine

This paper describes a novel fuzzy rule-based modeling approach for some slow industrial processses. Structure identification is realized by clustering and support vector machines. When the process is slow, fuzzy rules can be obtained automatically. Parameters identification uses the techniques of fuzzy neural networks. A time-varying learning rate assures stability of the modeling error.

متن کامل

Neuro-fuzzy Systems Complexity Reduction by Subtractive Clustering and Support Vector Learning for Nonlinear Process Modeling

The design of a neuro-fuzzy system based on a radial basis function (RBF) network architecture and using support vector learning is considered. Typically, a neuro-fuzzy model structure is created from numerical data, however the common modeling techniques may introduce unnecessary redundancy into the rule base. It is of great interest to reduce the number of fuzzy rules. The proposed method pro...

متن کامل

An Evolutionary Approach to Constraint-Regularized Learning

The success of machine learning methods for inducing models from data crucially depends on the proper incorporation of background knowledge about the model to be learned. The idea of constraint-regularized learning is to employ fuzzy set-based modeling techniques in order to express such knowledge in a flexible way, and to formalize it in terms of fuzzy constraints. Thus, background knowledge c...

متن کامل

Application of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process

Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003